pH profile of cytochrome c-catalyzed tyrosine nitration.

نویسندگان

  • Yasuhiro Kambayashi
  • Yoshiaki Hitomi
  • Norio Kodama
  • Masayuki Kubo
  • Junna Okuda
  • Kei Takemoto
  • Masafumi Shibamori
  • Tomoko Takigawa
  • Keiki Ogino
چکیده

In the present study, we investigated how cytochrome c catalyzed the nitration of tyrosine at various pHs. The cytochrome c-catalyzed nitration of tyrosine occurred in proportion to the concentration of hydrogen peroxide, nitrite or cytochrome c. The cytochromec-catalyzed nitration of tyrosine was inhibited by catalase, sodium azide, cystein, and uric acid. These results show that the cytochrome c-catalyzed nitrotyrosine formation was due to peroxidase activity. The rate constant between cytochrome c and hydrogen peroxide within the pH range of 3-8 was the largest at pH 6 (37 degrees C). The amount of nitrotyrosine formed was the greatest at pH 5. At pH 3, only cytochromec-independent nitration of tyrosine occurred in the presence of nitrite. At this pH, the UV as well as visible spectrum of cytochrome c was changed by nitrite, even in the presence of hydrogen peroxide, probably via the formation of a heme iron-nitric oxide complex. Due to this change, the peroxidase activity of cytochrome c was lost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regular Paper pH Profile of cytochrome c-catalyzed tyrosine nitration*

In the present study, we investigated how cytochrome c catalyzed the nitration of tyrosine at various pHs. The cytochrome c-catalyzed nitration of tyrosine occurred in proportion to the concentration of hydrogen peroxide, nitrite or cytochrome c. The cytochrome c-catalyzed nitration of tyrosine was inhibited by catalase, sodium azide, cystein, and uric acid. These results show that the cytochro...

متن کامل

Nitration of solvent-exposed tyrosine 74 on cytochrome c triggers heme iron-methionine 80 bond disruption. Nuclear magnetic resonance and optical spectroscopy studies.

Cytochrome c, a mitochondrial electron transfer protein containing a hexacoordinated heme, is involved in other physiologically relevant events, such as the triggering of apoptosis, and the activation of a peroxidatic activity. The latter occurs secondary to interactions with cardiolipin and/or post-translational modifications, including tyrosine nitration by peroxynitrite and other nitric oxid...

متن کامل

Effect of β-lactamase-catalyzed hydrolysis of cephalosporins on peroxynitrite-mediated nitration of serum albumin and cytochrome c

The hydrolysis of β-lactam antibiotics by β-lactamases is one of the major bacterial defense systems. These enzymes generally hydrolyze a variety of antibiotics including the latest generation of cephalosporins, cephamycins and imipenem. In this paper, the effect of cephalosporins-based antibiotics on the peroxynitrite-mediated nitration of protein tyrosine is described. Although some of the an...

متن کامل

Specific nitration of tyrosines 46 and 48 makes cytochrome c assemble a non-functional apoptosome.

Under nitroxidative stress, a minor fraction of cytochrome c can be modified by tyrosine nitration. Here we analyze the specific effect of nitration of tyrosines 46 and 48 on the dual role of cytochrome c in cell survival and cell death. Our findings reveal that nitration of these two solvent-exposed residues has a negligible effect on the rate of electron transfer from cytochrome c to cytochro...

متن کامل

Coupling of tyrosine deprotonation and axial ligand exchange in nitrocytochrome c.

Here we report a spectroscopic, electrochemical and computational study of cytochrome c showing that nitration of Tyr74 induces Tyr deprotonation, which is coupled to Met/Lys axial ligand exchange, and results in concomitant gain of peroxidatic activity at physiological pH.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta biochimica Polonica

دوره 53 3  شماره 

صفحات  -

تاریخ انتشار 2006